ITU Experience and Lab Support for the Marmaray Project

Prof.Dr. Mehmet Ali Taşdemir
Assoc.Prof.Dr. Yılmaz Akkaya
ITU Role in Marmaray

General Directorate of Railways, Harbours and Airports Construction

Employer
reports to the Ministry of Transportation

Avrasyaconsult
Representative on the construction sites
engineering and consulting services

Taisei-Gama-Nurol
Contractor
design and construction of the structures

Subcontractors
supply of concrete and concrete making materials

ITU Marmaray Lab
Independent testing agency
ITU Experience

- Evaluation of the project specification
- Special tests required (TI-B, NT BUILD, ASTM..)
 - New test set-ups
 - Technical personnel
 - ISO EN 17025

- A new laboratory with the required infrastructure
- Purchase and calibration of new lab equipment
- Expert visits
- Training of engineers and technicians
- Handbook for quality, procedures, instructions and records/reports
Construction Materials Laboratory

- 2500 m²
- Fresh concrete lab
- Mechanical testing lab
- Curing rooms
ITU Marmaray Lab

February 2005 – restoration of new labs
April 2005 – testing started

~500 m²
Composed of dedicated testing rooms
Towards Accreditation

- Training and certification of technicians
- Calibration, maintenance and spares of equipment
- Procedures and Test instructions
- Traceability of test results
- Measurement uncertainty
- Audits, Corrective/preventive actions
- Coordination meetings
Starting with Aggregates!
Sample Preparation

- **Splitter**
- **Quartering**
- **Crushing**
- **Drying**
- **Sampling and Storage**
Aggregate Testing

- Grading, Fine Materials
- Density, Water Absorption
- Drying Shrinkage
- Los Angeles Abrasion
- Frost Resistance (MgSO₄)
Chemical Analysis

– Chloride, Sulphate, Alkali, pH
– Methylene Blue, Organic Impurities
Alkali Aggregate Reactions with mortar/concrete bars

- Short Term Test ➔ ASTM C1260 Mortar Bar
- 6 Month Test ➔ TI-B 51 Mortar Bar
- Long Term Test ➔ CAN A23.2-14A Concrete Bar
Measurement set-up
Petrographic Analysis

- Macro observations
- Reactive Minerals

fine aggregate macro

dense chalcedony

altered k-feldspar

coarse aggregate macro

chert

porous
Concrete Testing

- Fresh Concrete
- Hardening Concrete
- Hardened Concrete
Fresh Concrete Tests

- Slump, Flow
- U-Box / L-Box
- Air Content
- Density
- Temperature
- Bleeding
- Stiffening Time
Design for Service Life and Cracking Risk

1. Early age cracking

\[
\frac{\text{Cracking stress}}{0.9 \times \text{Tensile strength}} < 0.7
\]

Simulation for crack risk

2. Durability
 - Material quality
 - Permeability
 - Concrete Petrography
Hardening Concrete Tests

- Strength Evaluation
 0.5, 1, 2, 3, 7, 14, 28. days
 - Compressive / Tensile Strength
 - Modulus of Elasticity

100% moisture curing room
Hardening Concrete Tests

- Thermal Expansion
- Activation Energy
Hardening Concrete Tests

• Adiabatic Heat Development
Hardening Concrete Tests

- Shrinkage (TI-B 102)
Hardening Concrete Tests

- Creep
 (TI-B 102)
Design of a Test Report
Simulation for Cracking Risk

Casting sequence

1. Foundation
2. Shear wall
3. Slab

- Casting days and sequence
- Removal day of formwork/insulation
- Environmental temperature and humidity
- Specific heat capacity and heat conductivity of ground
- Formwork/Insulation thickness and heat conductivity
- Structural boundary conditions
- Fresh concrete temperature
- Cooling/heating systems

- E modulus and tensile strength development
- Thermal expansion coefficient
- Poisson’s ratio
- Early age shrinkage and creep
- Adiabatic heat development
- Specific heat capacity and heat conductivity
Max (internal) ve min (surface) temperatures

$\Delta T_{\text{int}} = \text{Difference between the average and surface temps. of member}$

$\Delta T_{\text{out}} = \text{Difference between the av. temps. of the new member and existing member}$
Crack risk = stress/strength

For water retaining structures:
- $T_{\text{max}} < 50^\circ\text{C}$
- $\Delta T_{\text{ iç}} < 15^\circ\text{C}$
- $\Delta T_{\text{ dış}} < 15^\circ\text{C}$
- Risk < 0.7
- Crack width$_{\text{max}}$ < 0 – 0.2 mm
Hardened Concrete Tests

- Compressive Strength
- Density

rock specimen

jet grout specimens
Hardened Concrete Tests

- Rapid Chloride Test
 - Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
Hardened Concrete Tests

- Chloride Diffusion
Hardened Concrete Tests

- DEF - Delayed Ettringite Formation

Properties at 65°C vs 50°C
1 m³ Trial Casting
Full-Scale Trial Casting
Repair Quality

- Pull-Out
Site Testing

- Crack Depth Investigation
 - impact echo
Concrete Petrography
Concrete Petrography

plane section cup grinder

thin section lapping machine

air void petroplaner
Thin Section Analysis

- mineralogical examination
- cementitious materials

- fluorescence intensity
- capillary porosity (w/c ratio)
- paste homogeneity
- cracks - interface
Cementitous Materials

alite

belite

fly ash
water/cement ratio

relationship between light level – w/c ratio
Paste Homogeneity
Air Content and Distribution
Calcium Hydroxide, Carbonation, Ettringite
Crack Length-Width-Direction
Repair Materials - Concrete Interface
Plane Section Analysis

Aggregate: shape, type, content, distribution
Mortar: homogeneity, segregation
Workmanship: entrapped air voids
Cracks: content, direction, length, width
Surface : bleeding, damage
Rebar : size, interface, corrosion
Repair Material – Concrete Interface
Epoxy Injection
Air Void Analysis

ASTM C457
- Air Content
- Specific Surface
- Spacing Factor

Rapid Air 457 Air Void Analyzer
Conclusion

or Just the Beginning?

• A fully equipped laboratory with a quality system
• Infrastructure for development of new tests
• Experience and knowledge to be reflected upon undergraduate/graduate education
• An example of industry-academia collaboration
• Towards an advanced research center
• Collaborations with international contractors for the quality assurance on site lab of major construction projects
THANK YOU !