Social Science Content
In Project-Based Engineering

Amy E. Slaton, PhD
Drexel University
Philadelphia PA
slatonae@drexel.edu
Some historical precedents...
Some historical precedents...

“Project-based” learning has long been part of American engineering curricula.
“Non-technical” subjects in optimized engineering education....1880s-1930s:
1880s-1930s:
- Classical subjects: Greek, Latin, Literature and History
1880s-1930s:
-Classical subjects: Greek, Latin, Literature and History

“Hallmarks of Civilization”
Field work is also of vital importance... “making the man”
Field work is also of vital importance... “making the man”

Together, classical instruction and field experience prepare these young men for social leadership (managerial careers)
1940s-1950s
1940s-1950s
Wartime brings immense growth in engineering education
1940s-1950s

Classics give way to Liberal Arts: Literature and History, Economics ...the “Well-rounded” Engineer
1940s-1950s
Classics give way to Liberal Arts: Literature and History, Economics ... the “Well-rounded” Engineer

But new stress on science turns attention away from social context and applications
1960s-1970s
1960s and 1970s
1960s and 1970s

New concerns about social origins and impacts of engineering...new priorities for engineering
1960s and 1970s
New concerns about social origins and impacts of engineering...new priorities for engineering

New curricula and degree programs in “Appropriate Technology” and “Science, Technology and Society”
1980s through Today
1980s through Today

Humanities and Social Sciences...

Requirements return to the notion of separate, compartmentalized courses
1980s through Today

Humanities and Social Sciences...

Requirements return to the notion of separate, compartmentalized courses

For students and faculty: Social origins and impacts of engineering are separate from, and secondary to, the technical
Curricula include science or technology, and liberal arts or social sciences, as distinct “distribution requirements,” and are gauged in terms of outcomes.
Curricula include science or technology, and liberal arts or social sciences, as distinct “distribution requirements,” and are gauged in terms of outcomes. ABET, universities, and employers support this approach. “Standards” are newly compelling throughout education; metrics for merit.
<table>
<thead>
<tr>
<th>Outcome Number and Title</th>
<th>Level of Achievement</th>
<th>Knowledge</th>
<th>Comprehension</th>
<th>Application</th>
<th>Analysis</th>
<th>Synthesis</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mathematics</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Natural sciences</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Humanities</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Social sciences</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Materials science</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Mechanics</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Experiments</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Problem recognition</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>M/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Risk and uncertainty</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Sustainability</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Contemp. Issues</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Project management</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Breadth in CE</td>
<td></td>
<td>B</td>
<td>M/30</td>
<td>M/30</td>
<td>M/30</td>
<td>M/30</td>
<td>E</td>
</tr>
<tr>
<td>14. Technical specialization</td>
<td></td>
<td>B</td>
<td>M/30</td>
<td>M/30</td>
<td>M/30</td>
<td>M/30</td>
<td>E</td>
</tr>
<tr>
<td>15. Professional</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Communication</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Public policy</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Business and PA</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Globalization</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Leadership</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Teamwork</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Attitudes</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Lifelong learning</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Professional and eth</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- **B**: Portion of the BOK fulfilled through the bachelor's degree
- **M/30**: Portion of the BOK fulfilled through the master's degree or equivalent (approximately 20 semester credits of acceptable graduate-level or upper-level undergraduate courses in a specialized technical area and/or professional practice area related to civil engineering)
- **E**: Portion of the BOK fulfilled through the prelicensure experience

Figure ES-1. Entry into the practice of civil engineering at the professional level requires fulfilling 24 outcomes to the appropriate levels of achievement.
“Outcomes”: However unintentionally, values remain distinct from skills related to practice
“Outcomes”: However unintentionally, values remain distinct from skills related to practice.

Where social scientific or humanities concerns are supplied to engineering students through different classes, departments and instructors and treated as distinct portions of projects, and where instructors treat these concerns as different “moments” or “kinds” of learning... real integration is unlikely.
<table>
<thead>
<tr>
<th>Outcome Number and Title</th>
<th>Level of Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Knowledge</td>
</tr>
<tr>
<td>1. Mathematics</td>
<td>B</td>
</tr>
<tr>
<td>2. Natural science</td>
<td>B</td>
</tr>
<tr>
<td>3. Humanities</td>
<td>B</td>
</tr>
<tr>
<td>4. Social sciences</td>
<td>B</td>
</tr>
<tr>
<td>5. Materials science</td>
<td>B</td>
</tr>
<tr>
<td>7. Experiments</td>
<td>B</td>
</tr>
<tr>
<td>8. Problem recognition and solving</td>
<td>B</td>
</tr>
<tr>
<td>9. Design</td>
<td>B</td>
</tr>
<tr>
<td>10. Sustainability</td>
<td>B</td>
</tr>
<tr>
<td>11. Contemp. issues & hist. perspectives</td>
<td>B</td>
</tr>
<tr>
<td>12. Risk and uncertainty</td>
<td>B</td>
</tr>
<tr>
<td>13. Project management</td>
<td>B</td>
</tr>
<tr>
<td>14. Breadth in civil engineering areas</td>
<td>B</td>
</tr>
<tr>
<td>15. Technical specialization</td>
<td>B</td>
</tr>
<tr>
<td>16. Communication</td>
<td>B</td>
</tr>
<tr>
<td>17. Public policy</td>
<td>B</td>
</tr>
<tr>
<td>18. Business and public administration</td>
<td>B</td>
</tr>
<tr>
<td>19. Globalization</td>
<td>B</td>
</tr>
<tr>
<td>20. Leadership</td>
<td>B</td>
</tr>
<tr>
<td>21. Teamwork</td>
<td>B</td>
</tr>
<tr>
<td>22. Attitudes</td>
<td>B</td>
</tr>
<tr>
<td>23. Lifelong learning</td>
<td>B</td>
</tr>
<tr>
<td>24. Professional and ethical responsibility</td>
<td>B</td>
</tr>
</tbody>
</table>

Key:
- **B**: Portion of the BOK fulfilled through the bachelor's degree
- **M/30**: Portion of the BOK fulfilled through the master's degree or equivalent (approximately 30 semester credits of acceptable graduate-level or upper-level undergraduate courses in a specialized technical area and/or professional practice area related to civil engineering)
- **E**: Portion of the BOK fulfilled through the prelicensure experience

Figure E5-1. Entry into the practice of civil engineering at the professional level requires fulfilling 24 outcomes to the appropriate levels of achievement.
Structure and Content *Can* Change...
Structure:

- Alter course requirements to integrate social and technical materials (vs. separate classes)
- Alter course requirements to integrate social and technical materials (vs. separate classes)
- Reward faculty for socially informed instruction AND research (address huge obstacles to this)
Structure:

- Alter course requirements to integrate social and technical materials (vs. separate classes)
- Reward faculty for socially informed instruction AND research (address huge obstacles here)
- Treat student work in both areas as equally important and entirely inseparable
Structure:

- Alter course requirements to integrate social and technical materials (vs. separate classes)
- Reward faculty for socially informed instruction AND research (address huge obstacles here)
- Treat student work in both areas as equally important and entirely inseparable

...a culture change.
Content:

- New core questions:
Content:

- New core questions:
 - NOT: “What does the community want from a new storm water system?”
Content:

-New core questions:
 -NOT: “What does the community want from a new storm water system?”
 -BUT: “Who needs to be at the table here?”
- New core questions:
 - NOT: “What does the community want from a new storm water system?”
 - BUT: “Who needs to be at the table here?”
- History: City water departments, eng. professionalization patterns, planning priorities that have favored developers, etc.
New core questions:

- NOT: “What does the community want from a new storm water system?”
- BUT: “Who needs to be at the table here?”

-Sociology: Bureaucracies can suppress community voices; racial and class tensions can undermine environmental equity, etc.
-New core questions:
 -NOT: “What is the best storm water system?”
 -BUT: “What can best solve the problem?”
New core questions:

-NOT: “What is the best storm water system?”

-BUT: “What can best solve the problem?”

-STS: Deconstruct “cost,” “efficiency,” and “acceptable environmental risks” so that inequities and long-term consequences of particular technical/infrastructural choices become visible
Consider....
Consider...
- Low Impact Development (LID)
- Instead of conveying and treating stormwater in large, expensive end-of-pipe facilities, build small-scale, decentralized, lot-level technologies
-New core questions:
 -NOT: “What is the best storm water system?”
 -BUT: “What can best solve the problem?”
-STS: Deconstruct “cost,” “efficiency,” and “acceptable environmental risks” so that inequities and long-term consequences become visible
-Possibly A NON-ENGINEERING solution would be better...
New core questions:

- NOT: “What is the best storm water system?”
- BUT: “What can best solve the problem?”
 “What is the problem?”
 “Who decided?”
 “What kind of accountability should be established?”
Consider....
Consider....

- Different development outlooks
 - redevelop underused areas
- Conservation schemes
 - educate for sustainability
- Infrastructure or engineering work that is judged by those on whom it has impacts
Consider....

- Different development outlooks
 - redevelop underused areas
- Conservation schemes
 - educate for sustainability
- Infrastructure or engineering work that is judged by all those on whom it has impacts...
 ...before, during, and after
 ...with failure as an option
Only when engineering learning has the possibility of NON-engineering outcomes will authentic socially informed learning take place.
Social Science Content
In Project-Based Engineering

Amy E. Slaton, PhD
Drexel University
Philadelphia PA
slatonae@drexel.edu
Chi Epsilon's Four Pillars

- Scholarship
- Character
- Practicality
- Sociability